翻訳と辞書
Words near each other
・ Vonore, Tennessee
・ Vonray
・ Vonray (album)
・ Vons
・ Vons (disambiguation)
・ Vonta Leach
・ Vontae Davis
・ Vontaze Burfict
・ Vonteego Cummings
・ Vontez Duff
・ Vonthibettu Prabhakara Hegde
・ Vonthongchai Intarawat
・ Vontimitta
・ Vontobel
・ Von Staudt conic
Von Staudt–Clausen theorem
・ Von Stedingk
・ Von Stein
・ Von Sternberg
・ Von Sternberg House
・ Von Steuben Day
・ Von Steuben Metropolitan Science Center
・ Von Stutterheim
・ Von Sydow
・ Von Sydow murders
・ Von Südenfed
・ Von Thronstahl
・ Von Trapp
・ Von Trapp children
・ Von Trotha-Firestien Farm


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Von Staudt–Clausen theorem : ウィキペディア英語版
Von Staudt–Clausen theorem
In number theory, the von Staudt–Clausen theorem is a result determining the fractional part of Bernoulli numbers, found independently by
and .
Specifically, if ''n'' is a positive integer and we add 1/''p'' to the Bernoulli number ''B''2''n'' for every prime ''p'' such that ''p'' − 1 divides 2''n'', we obtain an integer, i.e.,
B_ + \sum_ \frac1p \in \Z .
This fact immediately allows us to characterize the denominators of the non-zero Bernoulli numbers ''B''2''n'' as the product of all primes ''p'' such that ''p'' − 1 divides 2''n''; consequently the denominators are square-free and divisible by 6.
These denominators are
: 6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, ... .
== Proof ==
A proof of the Von Staudt–Clausen theorem follows from an explicit formula for Bernoulli numbers which is:
: B_=\sum_^}\sum_^m^} \!
and as a corollary:
: B_=\sum_^}(-1)^jS(2n,j) \!
where S(n,j) \! are the Stirling numbers of the second kind.
Furthermore the following lemmas are needed:

Let p be a prime number then,

1. If p-1 divides 2n then,
: \sum_^}\equiv\pmod p \!
2. If p-1 does not divide 2n then,
: \sum_^}\equiv0\pmod p \!
Proof of (1) and (2): One has from Fermat's little theorem,
: m^\equiv 1\pmod p \!
for m=1,2,...,p-1 \!.
If p-1 divides 2n then one has,
: m^\equiv 1\pmod p \!
for m=1,2,...,p-1 \!.
Thereafter one has,
: \sum_^}\equiv \sum_^\equiv m^\pmod p \!
If one lets \wp=() \! (Greatest integer function) then after iteration one has,
: m^\equiv m^\pmod p \!
for m=1,2,...,p-1 \! and 0<2n-\wp(p-1).
Thereafter one has,
: \sum_^}\equiv\sum_^}\pmod p\!
Lemma (2) now follows from the above and the fact that ''S''(''n'',''j'')=0 for ''j''>''n''.
(3). It is easy to deduce that for a>2 and b>2, ab divides (ab-1)!.
(4). Stirling numbers of second kind are integers.
Proof of the theorem: Now we are ready to prove Von-Staudt Clausen theorem,
If j+1 is composite and j>3 then from (3), j+1 divides j!.
For j=3,
: \sum_^}=3 \cdot 2^-3^-3\equiv0 \pmod 4 \!
If j+1 is prime then we use (1) and (2) and if j+1 is composite then we use (3) and (4) to deduce:
: B_=I_n-\sum_} \!
where I_n \! is an integer, which is the Von-Staudt Clausen theorem.〔H. Rademacher, Analytic Number Theory, Springer-Verlag, New York, 1973.〕〔T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 197.〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Von Staudt–Clausen theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.